IOWA STATE UNIVERSITY

Department of Animal Science

WCGALP: Biology – Disease Resistance 2 Session

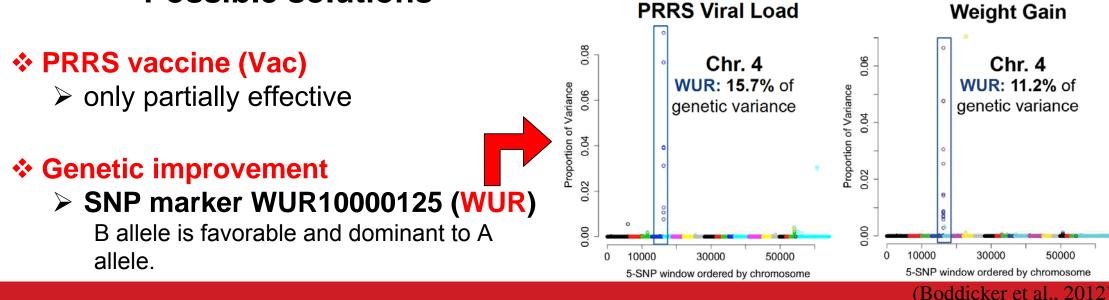
The Effects of PRRS Vaccination and WUR Genotype on Blood Gene Expression Response to Co-infection with PRRSV and PCV2 in Pigs

Qian Dong^{*1}, Joan Lunney², Yet Nguyen³, Christopher Tuggle¹, James Reecy¹, Bob Rowland⁴ & Jack Dekkers¹

¹Department of Animal Science, Iowa State University, 50011 Ames, Iowa ²USDA, ARS, BARC, APDL, 20705 Beltsville, Maryland ³Department of Statistics, Iowa State University, 50011 Ames, Iowa ⁴College of Veterinary Medicine, Kansas State University, 66506-5600 Manhattan, Kansas

02/13/2018

Porcine Reproductive and Respiratory Syndrome (PRRS) remains a major problem to the global swine industry


- > \$664 million losses/yr in the U.S. alone (Holtkamp et al. 2013)
- > PRRS virus (PRRSV): RNA virus \rightarrow High mutation rate
- > Heterogeneity \rightarrow Emergence of more virulent strains

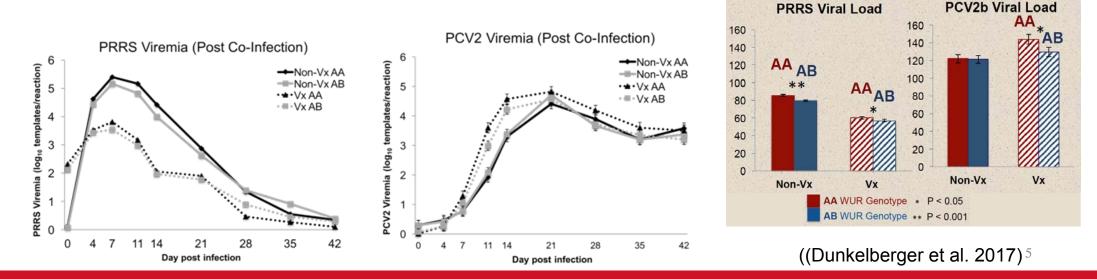
Porcine Reproductive and Respiratory Syndrome (PRRS) remains a major problem to the global swine industry

- > \$664 million losses/yr in the U.S. alone (Holtkamp et al. 2013)
- > PRRS virus (PRRSV): RNA virus \rightarrow High mutation rate
- \succ Heterogeneity \rightarrow Emergence of more virulent strains

Possible solutions

Co-infection with PRRSV and porcine circovirus type 2 (PCV2) is commonly observed in field cases

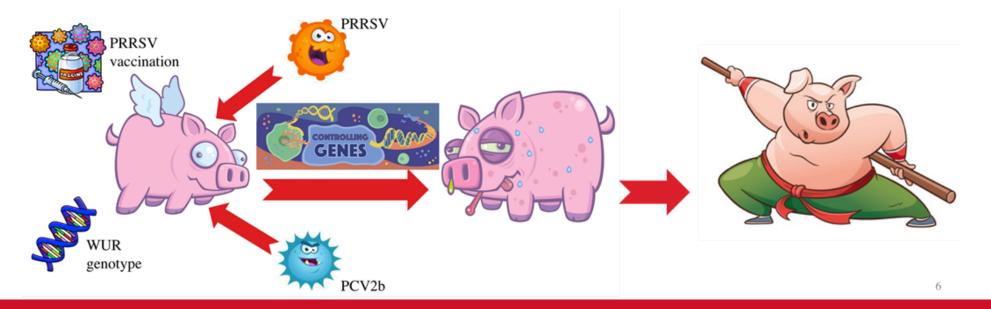
- ➢ Both PRRSV and PCV2 can suppress the host immune defense system.
- PRRSV can enhance replication of PCV2 (Allan et al., 2000).
- PCV2 can reduce the efficacy of PRRS modified live virus (MLV) vaccine


(Opriessnig et al. 2006).

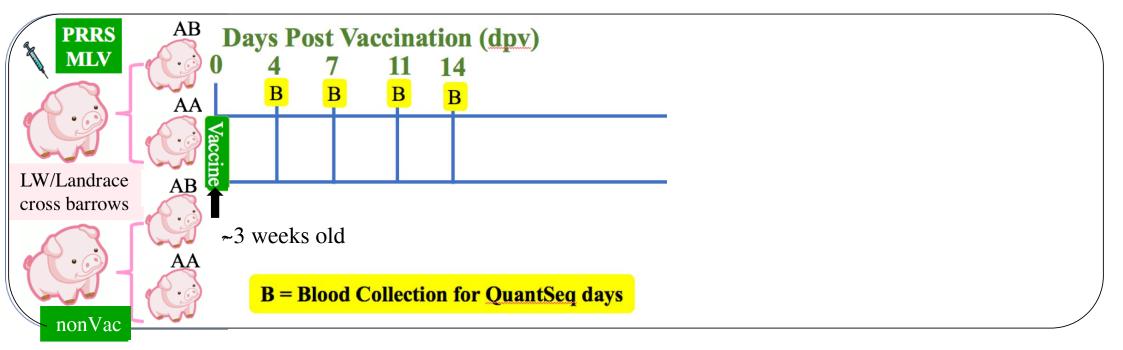
Co-infection with PRRSV and porcine circovirus type 2 (PCV2) is commonly observed in field cases

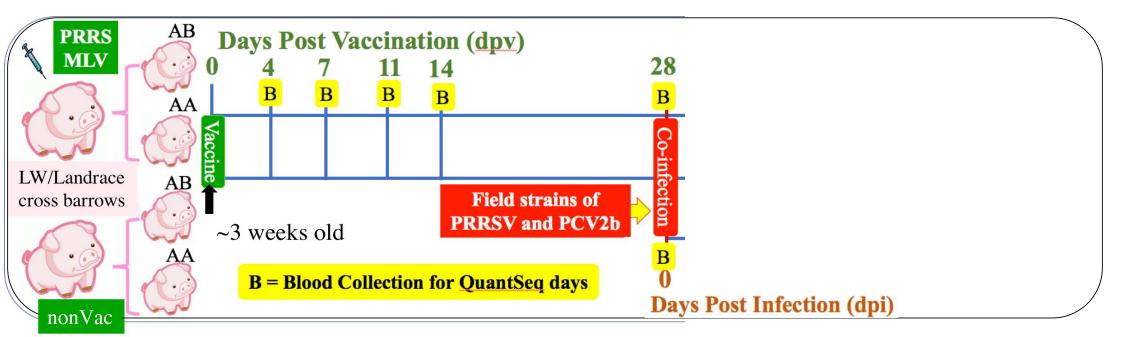
Both PRRSV and PCV2 can suppress the host immune defense system.
 PRRSV can enhance replication of PCV2 (Allan et al., 2000).

> PCV2 infection can reduce the efficacy of PRRS MLV vaccine (Opriessnig et al. 2006).


Effect of PRRS Vac and WUR on Viremia

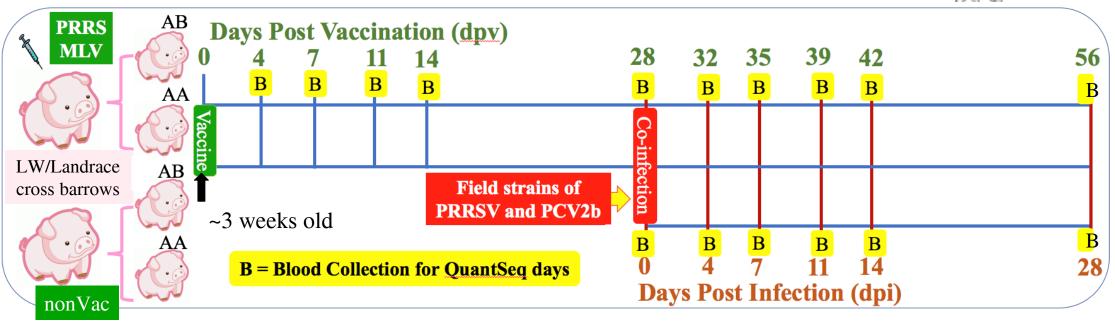
IOWA STATE UNIVERSITY


- To evaluate the effect of PRRS vaccination and WUR genotype on pig blood transcriptome response following the co-infection with PRRSV and PCV2.
- To identify mechanisms involved.


IOWA STATE UNIVERSITY

Blood Transcriptome Experimental design

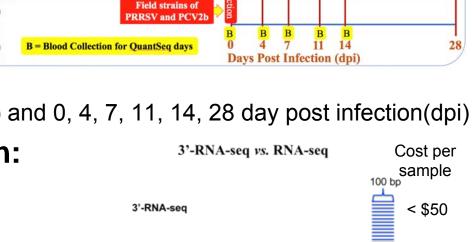
Blood Transcriptome Experimental design

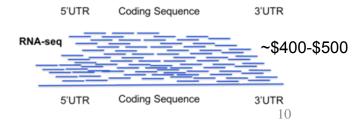


PRRS Host Genetics Consortium

PRRSV infection (KS62) and PRRS MLV strains are heterologous.

Blood Transcriptome Experimental design


• PRRSV infection (KS62) and PRRS MLV strains are heterologous.

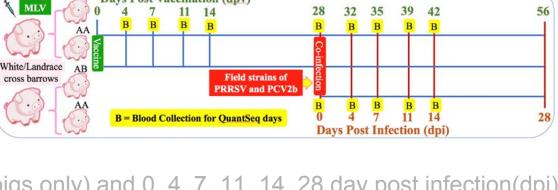

MLV

AA

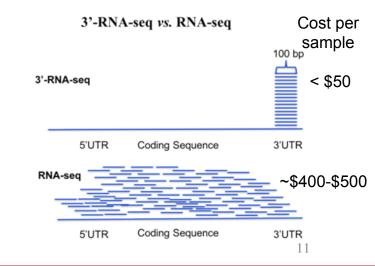
Days Post Vaccination (dpv)

- Animal:
 - 7 pigs for each treatment group:
 - Vac-AA, Vac-AB, nonVac-AA, nonVac-AB
 White/Landrac cross barrows
- Samples:
 - 191 Blood samples
 - at 4, 7, 11, 14 day post vaccination(dpv, Vac pigs only) and 0, 4, 7, 11, 14, 28 day post infection(dpi)
- Genome-wide analysis of gene expression:
 - QuantSeq (3'RNA-seq)

в

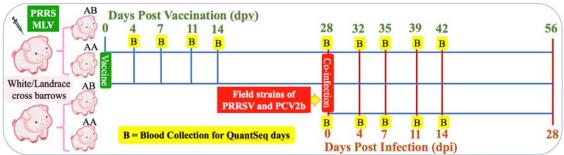

B

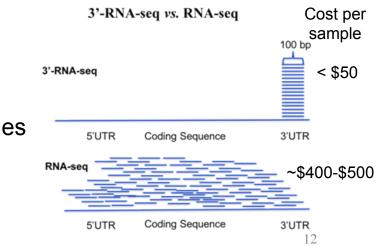
B B


Slide courtesy of Behnam Abasht Department of Animal Science

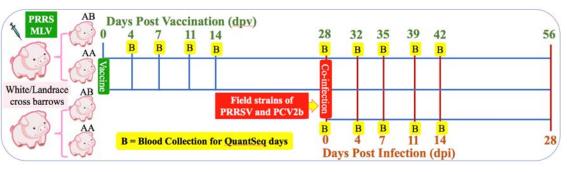
56

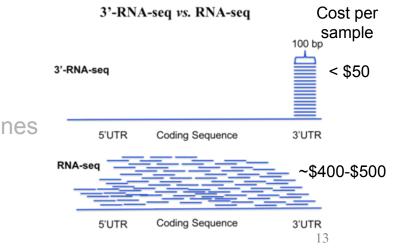
- Animal:
 - 7 pigs for each treatment group:
 - Vac-AA, Vac-AB, nonVac-AA, nonVac-AB
- Samples:
 - 191 blood samples
 - at 4, 7, 11, 14 day post vaccination(dpv, Vac pigs only) and 0, 4, 7, 11, 14, 28 day post infection(dpi)
- Genome-wide analysis of gene expression:
 - QuantSeq (3'RNA-seq)
 - Bluebee (pig 10.2 genome) \rightarrow gene expression counts




Days Post Vaccination (dpv)

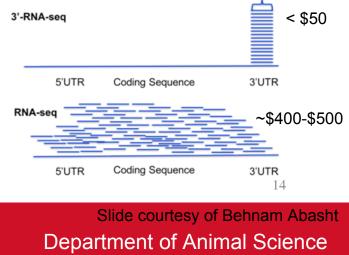
Slide courtesy of Behnam Abasht Department of Animal Science


- Animal:
 - 7 pigs for each treatment group:
 - Vac-AA, Vac-AB, nonVac-AA, nonVac-AB
- Samples:
 - Blood
 - at 4, 7, 11, 14 day post vaccination(dpv, Vac pigs only) and 0, 4, 7, 11, 14, 28 day post infection(dpi)
- Genome-wide analysis of gene expression:
 - QuantSeq (3'RNA-seq)
 - Bluebee (pig 10.2 genome) \rightarrow gene expression counts
 - Filtering globin and genes with low read counts \rightarrow 5445 genes



Slide courtesy of Behnam Abasht Department of Animal Science

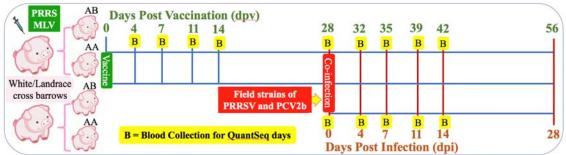
- Animal:
 - 7 pigs for each treatment group:
 - Vac-AA, Vac-AB, nonVac-AA, nonVacAB
- Samples:
 - Blood
 - at 4, 7, 11, 14 day post vaccination(dpv, Vac pigs only) and 0, 4, 7, 11, 14, 28 day post infection(dpi)
- Genome-wide analysis of gene expression:
 - QuantSeq (3'RNA-seq)
 - Bluebee (pig 10.2 genome) \rightarrow gene expression counts
 - Filtering globin and genes with low read counts \rightarrow 5445 genes
 - QuasiSeq → Differentially Expressed Genes (DEG, q<0.2)
 - Gene expr.= WUR+Vac+WUR*Vac+RIN+Lane



Slide courtesy of Behnam Abasht Department of Animal Science

- Animal:
 - 7 pigs for each treatment group:
 - Vac-AA, Vac-AB, nonVac-AA, nonVacAB
- Samples:
 - Blood
 - at 4, 7, 11, 14 day post vaccination(dpv, Vac pigs only) and 0, 4, 7, 11, 14, 28 day post infection(dpi)
- Genome-wide analysis of gene expression:
 - QuantSeq (3'RNA-seq)

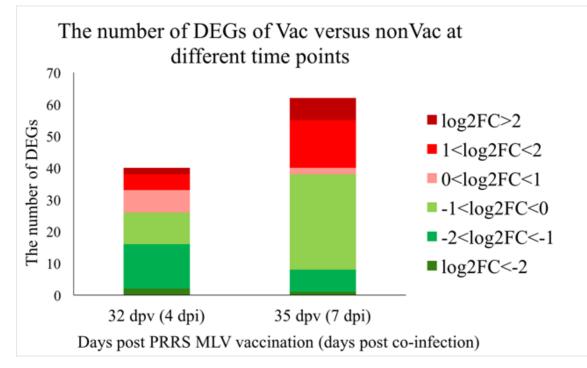
IOWA STATE UNIVERSITY


- Bluebee (pig 10.2 genome) \rightarrow gene expression counts
- Filtering globin and genes with low read counts \rightarrow 5445 genes
- QuasiSeq → Differentially Expressed Genes (DEG, q<0.2)
 - Gene expr.= WUR+Vac+WUR*Vac+RIN+Lane
- Ingenuity pathway analysis (IPA) \rightarrow functional analyses

Cost per sample

100 bp

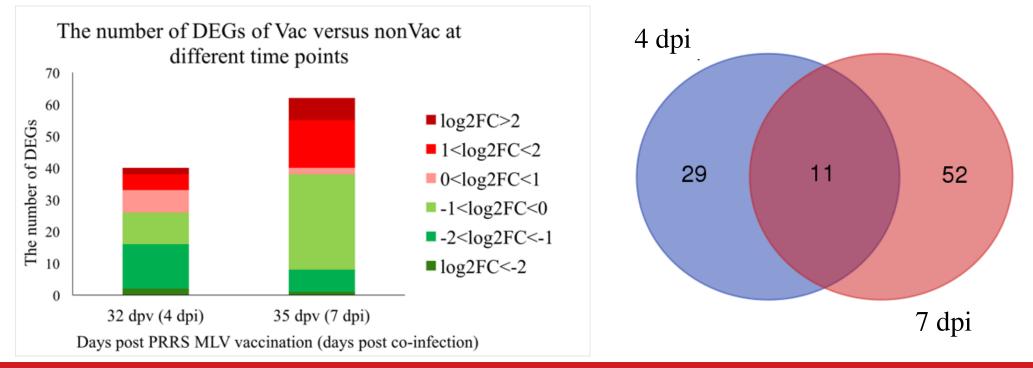
3'-RNA-seq vs. RNA-seq


Results and Discussion: number of DEGs (q<0.2)

 \clubsuit No DEGs for WUR or for WUR \times VxStatus.

Results and Discussion: number of DEGs (q<0.2)

\blacklozenge No DEGs for WUR or for WUR \times VxStatus.


✤ For VxStatus, DEGs identified at 4 dpi (n=40) and 7 dpi (n=63).

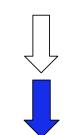
Results and Discussion: number of DEGs (q<0.2)

\blacklozenge No DEGs for WUR or for WUR \times VxStatus.

✤ For VxStatus, DEGs identified at 4 dpi (n=40) and 7 dpi (n=63).

All 11 overlapping DEGs were less expressed in vaccinated pigs and most related to viral immune response , e.g. MX1, MX2, CXCL10, ISG12(A), CD169, CD64.

Endocytosis by cells



IOWA STATE UNIVERSITY

Endocytosis by cells

Phagocytosis of phagocytes

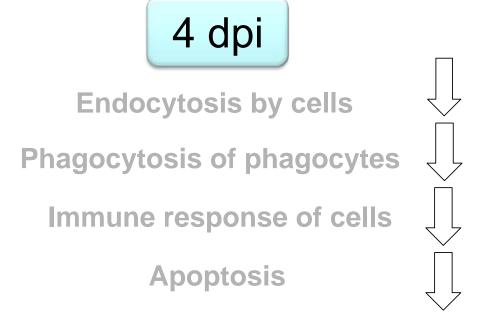
IOWA STATE UNIVERSITY

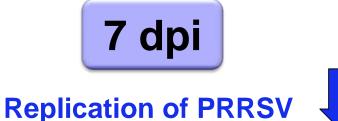
Endocytosis by cells

Phagocytosis of phagocytes

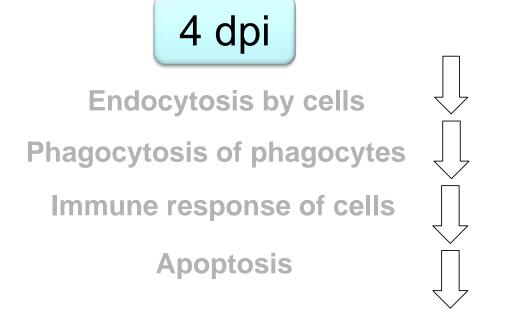
Immune response of cells

IOWA STATE UNIVERSITY

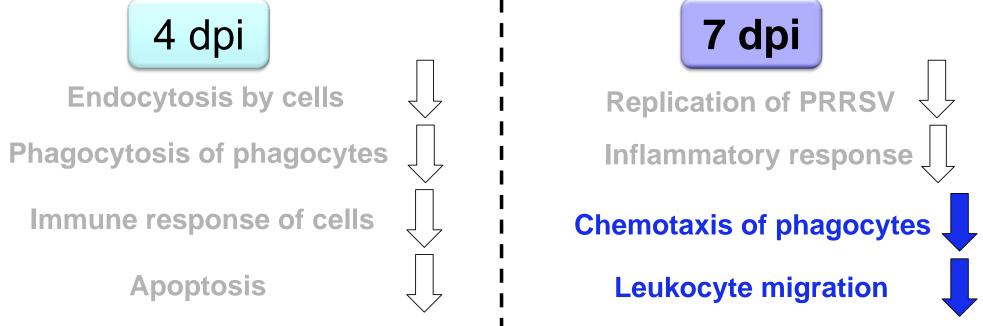

Endocytosis by cells


Phagocytosis of phagocytes

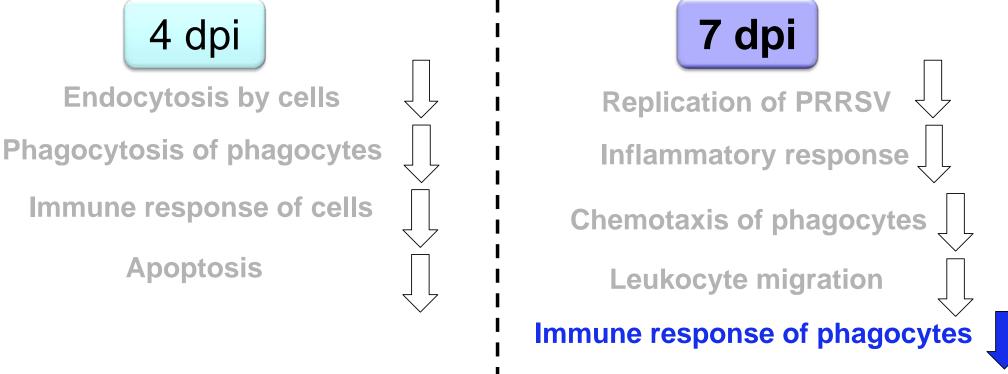
Immune response of cells

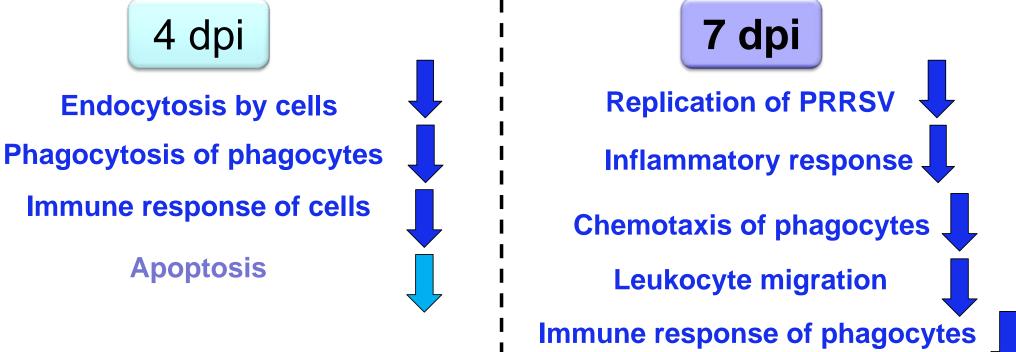

Apoptosis

IOWA STATE UNIVERSITY



IOWA STATE UNIVERSITY

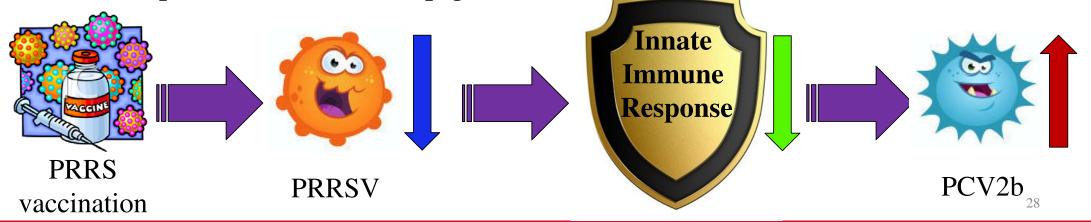



IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

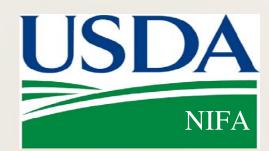
IOWA STATE UNIVERSITY


Conclusions

- The effects of WUR and interactions between WUR and vaccination status were not significant.
 - \triangleright GBP5 causative gene (Koltes et al., 2015) is not in pig genome build 10.2

Conclusions

The effects of WUR and interactions between WUR and vaccination status were not significant.


The effects of PRRS vaccination were significant at 4 dpi (32 dpv) and 7 dpi (35 dpv), which may represent lower innate immune response in vaccinated pigs.

IOWA STATE UNIVERSITY

USDA-NIFA grant # 2013-68004-20362

Christopher Tuggle James Reecy

Bob Rowland

16

Future work

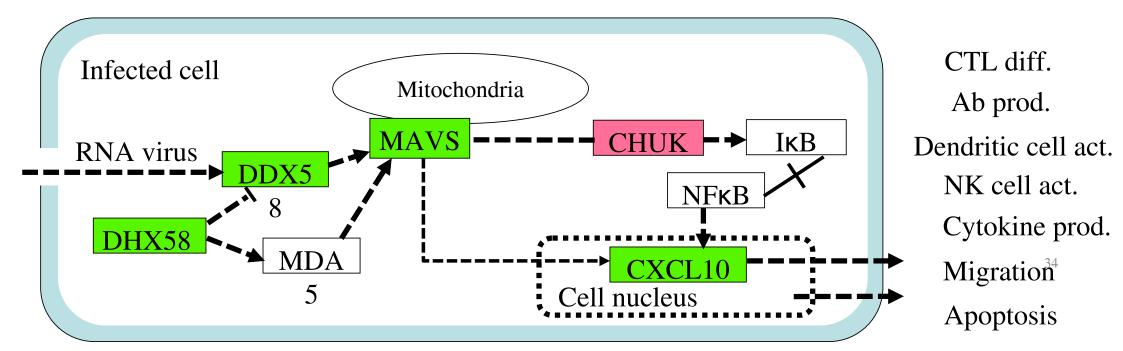
- Pig genome build $10.2 \rightarrow 11.1$ (GBP5)
- +Blood transcriptome assembly data (better 3' end)
- +Annotation of Iso-Seq data (more isoforms)

Future work

- Pig genome $10.2 \rightarrow 11.1$ version
- +Blood transcriptome assembly data (better 3' end)
- +Annotation of Iso-Seq data (more isoforms)
- Combine all time points QuantSeq data
- +2nd run QuantSeq
- +QuantSeq with globin block

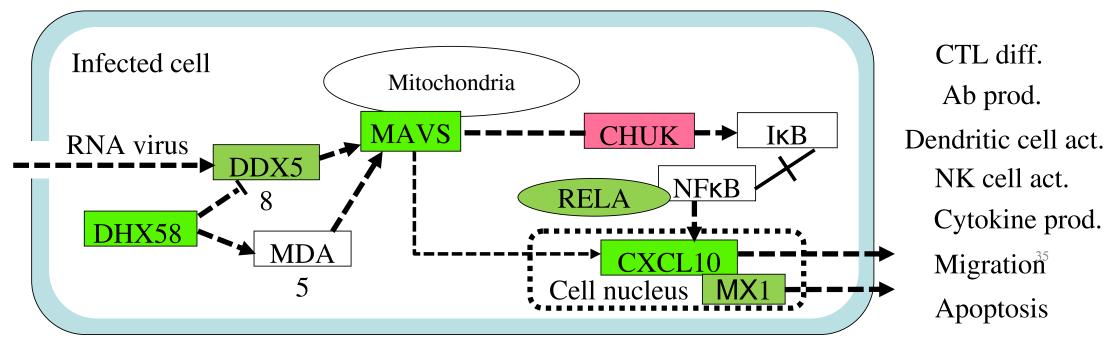
IOWA STATE UNIVERSITY

DEG (q<0.1) at 4 dpi

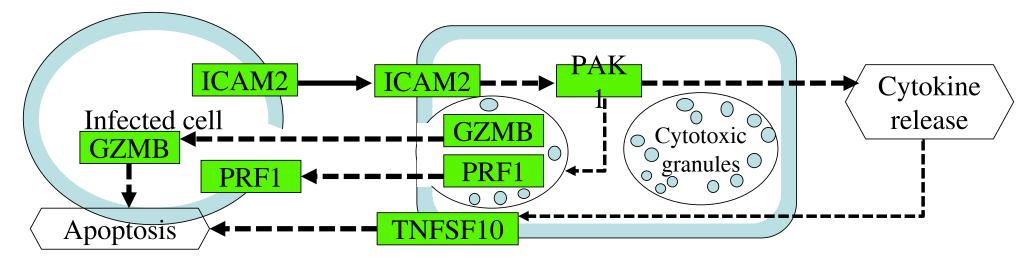

		1			
Gene stable ID	Gene description	Chrom.	Gene name	FDR	log2fc
ENSSSCG00000007146	sialic acid binding Ig like lectin 1 (CD169)	17	SIGLEC1	0.0015	-2.12
ENSSSCG00000002471	interferon, alpha-inducible protein 27 (IFI27L2)	7	ISG12(A)	0.0015	-2.46
ENSSSCG00000017087	GM2 ganglioside activator	16	GM2A	0.0015	-0.86
ENSSSCG0000006678	high affinity immunoglobulin gamma Fc receptor I precursor (CD64)	4	FCGR1A	0.0034	-1.91
ENSSSCG00000018005	myosin-1	12	MYH1	0.0034	5.92
ENSSSCG0000008647	cytidine/uridine monophosphate kinase 2	3	CMPK2	0.0034	-1.43
ENSSSCG00000012077	MX dynamin like GTPase 1	13	MX1	0.0143	-0.98
ENSSSCG00000010190	actin, alpha 1, skeletal muscle	14	ACTA1	0.0467	4.98
ENSSSCG00000017416	DExH-box helicase 58	12	DHX58	0.0467	-1.09
ENSSSCG00000029414	novelgene	1	novelgene	0.0467	′ -1.15
ENSSSCG00000018094	cytochrome b (mitochondrion)	MT	СҮТВ	0.0467	0.75
ENSSSCG00000018087	NADH-ubiquinone oxidoreductase chain 4	MT	MT-ND4	0.0481	0.70
ENSSSCG00000018084	NADH-ubiquinone oxidoreductase chain 3	MT	MT-ND3	0.0501	0.77
ENSSSCG00000009720	DExD/H-box helicase 60	14	DDX60	0.0572	-1.21
ENSSSCG00000025533	Cytochrome c oxidase subunit 7A1, mitochondrial	6	COX7A1	0.0610	-1.73
ENSSSCG00000022258	novelgene	17	novelgene	0.0715	-1.21

DEG (q<0.1) at 7 dpi

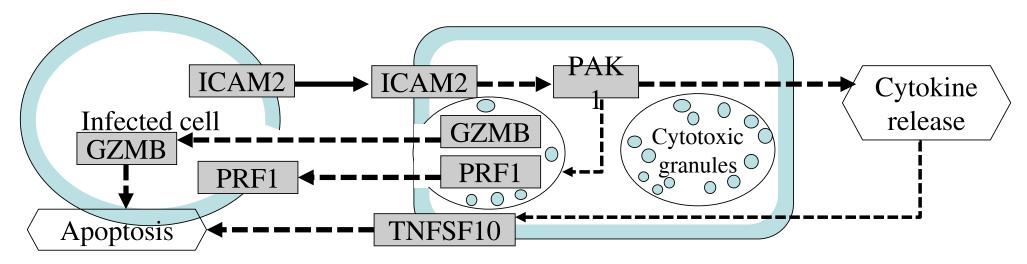
	А	В	С	D	E	F
1	Gene stable ID	Gene description	Chrom.	Gene name	qvalue.Vx	log2fc.Vx
2	ENSSSCG0000002471	interferon, alpha-inducible protein 27 (IFI27L2)	7	ISG12(A)	0.006	-2.39
3	ENSSSCG0000007146	sialic acid binding Ig like lectin 1 (CD169)	17	SIGLEC1	0.008	-1.92
4	ENSSSCG0000006678	novelgene	4	FCGR1A	0.015	-1.76
5	ENSSSCG00000012076	MX dynamin like GTPase 2	13	MX2	0.058	-1.23
6	ENSSSCG0000008977	C-X-C motif chemokine 10 precursor	8	CXCL10	0.006	-1.08
7	ENSSSCG00000010452	interferon induced protein with tetratricopeptide repeats 3	14	IFIT3	0.035	-1.04
8	ENSSSCG0000006588	S100 calcium binding protein A9	4	S100A9	0.033	-1.00
9	ENSSSCG0000000774	novelgene	5	USP18	0.059	-0.93
10	ENSSSCG00000029414	novelgene	1	novelgene	0.010	-0.82
11	ENSSSCG00000030108	novelgene	17	novelgene	0.029	-0.80
12	ENSSSCG0000000654	novelgene	5	novelgene	0.049	-0.72
13	ENSSSCG00000014136	versican	2	VCAN	0.092	-0.70
14	ENSSSCG00000016265	novelgene	15	novelgene	0.035	-0.68
15	ENSSSCG00000028448	novelgene	8	novelgene	0.045	-0.62
16	ENSSSCG00000014920	frizzled class receptor 4	9	FZD4	0.093	-0.59
17	ENSSSCG0000001408	allograft inflammatory factor 1	7	AIF1	0.065	-0.55
18	ENSSSCG0000001667	zinc finger protein 318	7	ZNF318	0.065	0.63
19	ENSSSCG00000012841	patatin like phospholipase domain containing 2	2	PNPLA2	0.064	0.68
20	ENSSSCG00000023710	receptor accessory protein 1	3	REEP1	0.093	0.69
21	ENSSSCG0000004554	novelgene	1	novelgene	0.049	0.73
22	ENSSSCG00000021803	novelgene	6	novelgene	0.096	0.79
23	ENSSSCG00000021812	membrane-spanning 4-domains, subfamily A, member 1	2	MS4A1	0.012	0.80
24	ENSSSCG0000007423	ubiquitin conjugating enzyme E2 C	17	UBE2C	0.035	0.88
25	ENSSSCG0000029901	ubiquitin conjugating enzyme E2 O	12	UBE2O	0.029	1.17


WGCNA results at 4 and 7 dpi

- Module at 4 dpi (cor.=-0.8, p value=2e-06, #genes=166)
- Four genes are involved in "RIG-I-like receptor signaling pathway" and less expressed in Vac, especially CXCL10, DHX58 as DEG.


WGCNA results at 4 and 7 dpi

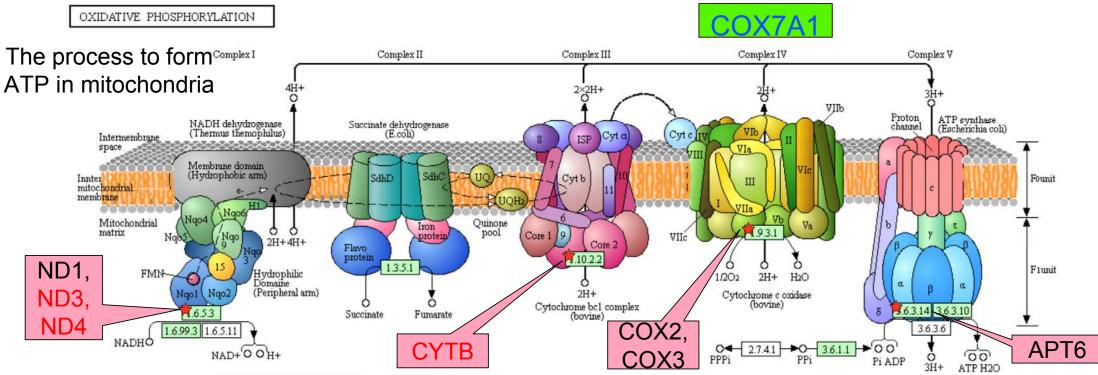
- Module at 4 dpi (cor.=-0.8, p value=2e-06, #genes=166)
- Four genes are involved in "RIG-I-like receptor signaling pathway" and less expressed in Vac, especially CXCL10, DHX58 as DEG.
- Module at 7 dpi (cor.=-0.52, p value=0.01, #genes=105)
- In total, nine genes are involved in "cytokine-cytokine receptor interaction", "chemokine signaling pathway" "NFkB signaling pathway" and "influenza A" and less expressed in Vac, especially DDX58 and MX1 as DEG.


WGCNA results at 4 and 7 dpi

- Module at 4 dpi (cor.=-0.8, p value=2e-06, #genes=166)
- seven genes are involved in "natural killer cell mediated cytotoxicity" and less expressed in Vac, especially TNFSF10 as DEG.

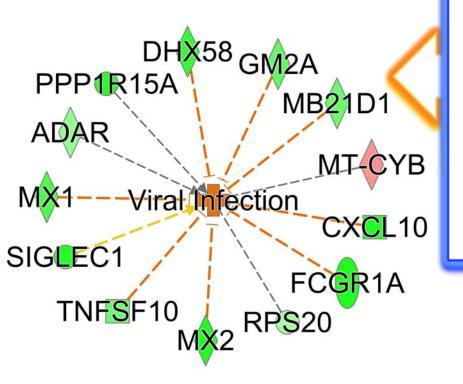
WGCNA results at 4 and 7 dpi

- Module at 4 dpi (cor.=-0.8, p value=2e-06, #genes=166)
- seven genes are involved in "natural killer cell mediated cytotoxicity" and less expressed in Vac, especially TNFSF10 as DEG.

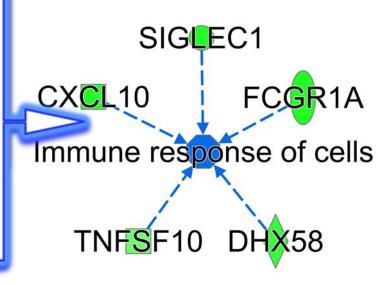


• Module at 7 dpi (cor.=0.6, p value=0.003, #genes=229)

≻In total, six genes are involved in apoptosis and less expressed in Vac, especially S100A9 as DEG.


WGCNA results at 4 dpi (32 dpv)

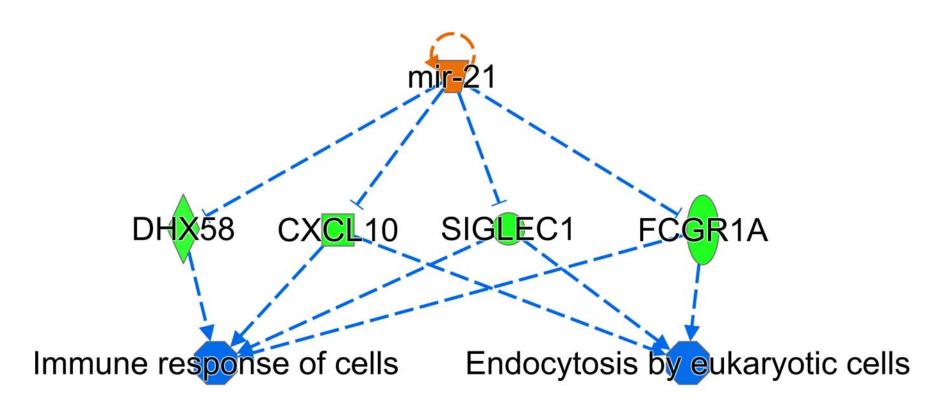
- Module 2 (cor.=0.64, p value=7e-04, #genes=39)
- > the most significantly positively correlated with vaccination status
- seven genes are involved in "oxidative phosphorylation" and more expressed in Vac, especially ND3, ND4, CYTB as DEG.



IPA results at 4 dpi (32 dpv)

DEGs (q<0.2) less expressed in PRRSV vaccinated pigs than non-vaccinated pigs DEGs (q<0.2) more expressed in PRRSV vaccinated pigs than non-vaccinated pigs

PRRS vaccination led to changes of gene expression that were predicted to decrease immune response of cells and increase viral infection.

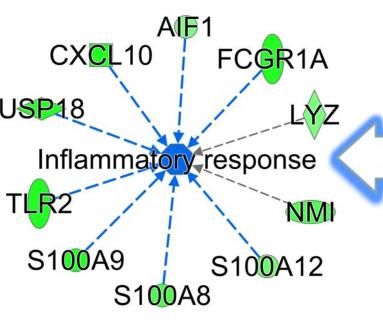


© 2000-2017 QIAGEN. All rights reserved.

0-2017 QIAGEN. All rights reserved.

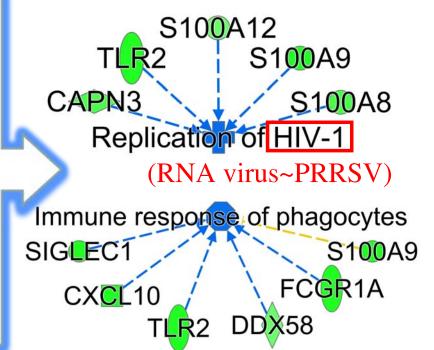
IOWA STATE UNIVERSITY

IPA results at 4 dpi (32 dpv)



© 2000-2018 QIAGEN. All rights reserved.

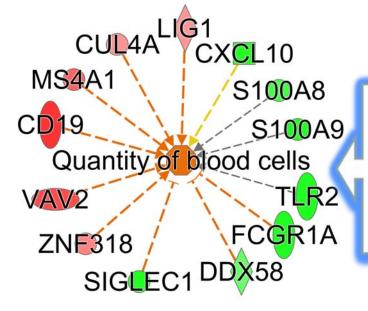
IOWA STATE UNIVERSITY


IPA results at 7 dpi (35 dpv)

DEGs (q<0.2) less expressed in PRRSV vaccinated pigs than non-vaccinated pigs DEGs (q<0.2) more expressed in PRRSV vaccinated pigs than non-vaccinated pigs

© 2000-2017 QIAGEN. All rights reserved.

PRRS vaccination led to changes of gene expression that were predicted to decrease inflammation response, replication of PRRSV, and immune response of phagocytes.



PRRS vaccine \rightarrow Genes -

→Inflammatory response
 →Immune response of phagocytes
 →Replication of PRRSV

IPA results at 7 dpi (35 dpv)

DEGs (q<0.2) less expressed in PRRSV vaccinated pigs than non-vaccinated pigs DEGs (q<0.2) more expressed in PRRSV vaccinated pigs than non-vaccinated pigs

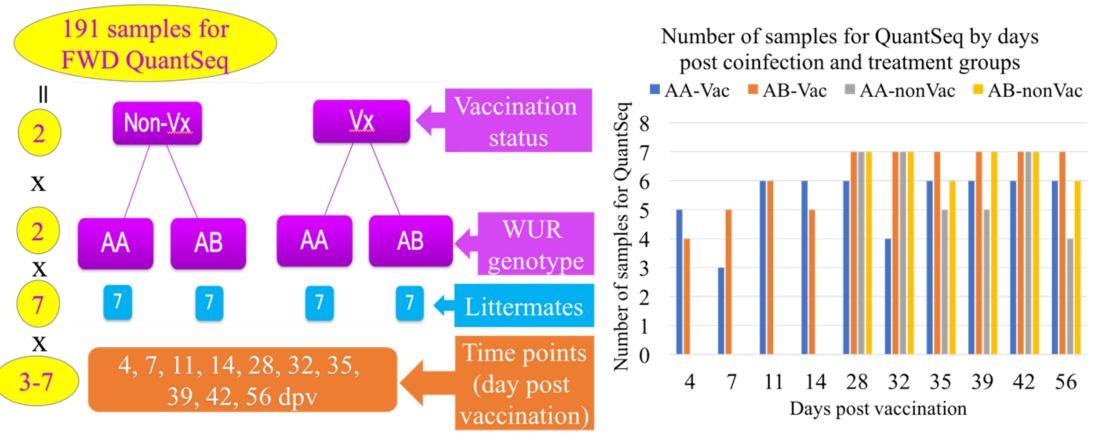
S100A8 ALF S100A9 TLR2 S100A12 XCL10 Chemotaxis of phagocytes PRRS vaccine decreased expression of genes that activate chemotaxis of phagocytes and that inhibit infection, and may increase quantity of blood cells and decrease leukocyte migration Infection of mammalia USP18 CXCL10

FCGR1

SIGLEC1

CXCL10 CD19 VCAN VAV2 AIF1 AKT2 Leukocyte migration TLR2 S100A9 DDX58 S100A8 LYZ

© 2000-2017 QIAGEN. All rights reserved.


Viral load (area under the curve)

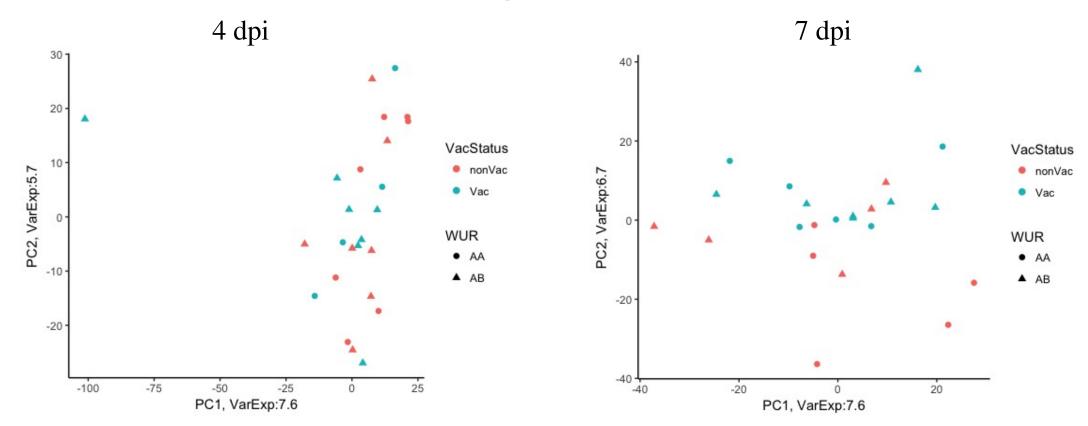
- PPRSV viremia: 0-21 dpi
 - > A portion of pigs enter a rebound phase after 21 dpi
 - > A property of the virus rather than host genetics
- PCV2 viremia: 0-42 dpi
 - > Much noisier
 - No clear evidence of rebound

Additional slides for potential questions

- PRRS MLV:
 - a 2-ml dose administered intramuscularly
 - Ingelvac PRRS MLV; Boehringer Ingelheim Animal Health; GenBank accession no. AF159149
- Co-infection on 28 dpv:
 - PRRSV:
 - 2-ml dose of 10⁵ TCID₅₀ PRRSV
 - isolate KS62; GenBank accession no. KM035803
 - PCV2:
 - 10^{3.6} TCID₅₀ PCV2b (GenBank accession no. JQ692110)
 - administered intranasally and intramuscularly

Blood QuantSeq Samples

45


IOWA STATE UNIVERSITY

QuantSeq data analysis pipeline

Bluebee	 Read QC → Trimming → Alignment → Mapping → Gene Read Counting Pig 10.2 version Genome
QuasiSeq	The generalized linear model at each time point for differential expression analysis: (1) For 4, 7, 11, 14 dpv: Gene expression=WUR+RIN+Plate (2) For 28, 32, 35, 39, 42, 56 dpv: Gene expr.=WUR+Vac+ Vac x WUR +RIN+Plate
IPA	 Differential expressed gene (DEG): q < 0.2 Ingenuity Pathway Analysis (IPA) for biological function analysis
•	Filtering: Removed Globin reads Removed reads from genes with average read count <2 across samples Removed reads from genes with read counts > 0 for less than 3 samples ⁴⁶

→ 5,445 genes expressed in blood on average

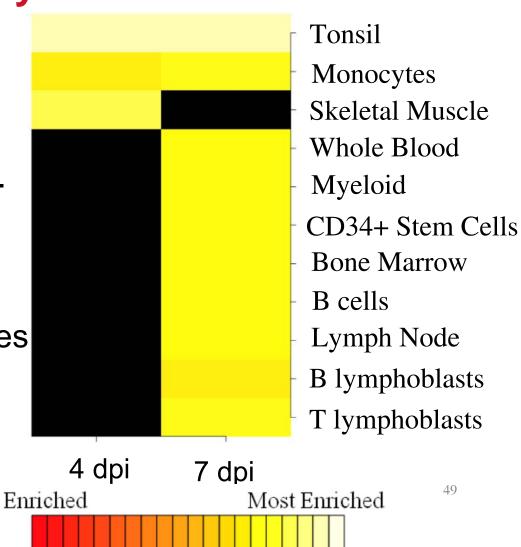
PCA plots

47

IOWA STATE UNIVERSITY

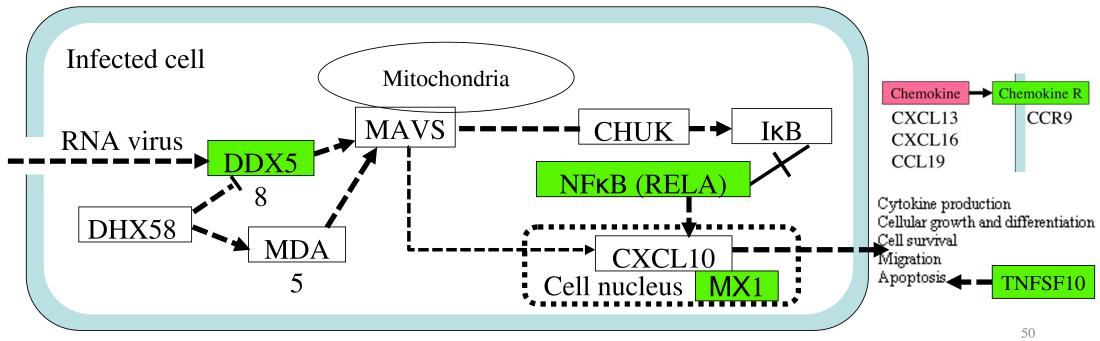
DEGs between Vaccinated vs. Non-vaccinated

Red = more highly expressed in the vaccinated pigs at time point X Green = more highly expressed in the nonvaccinated pigs at time point X

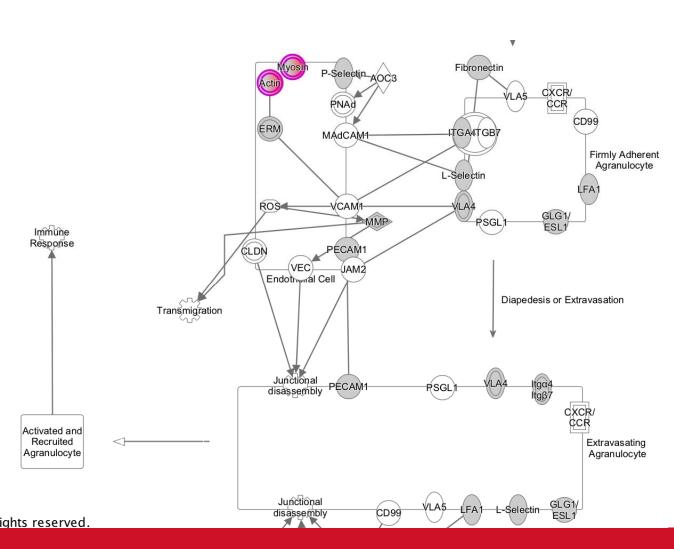


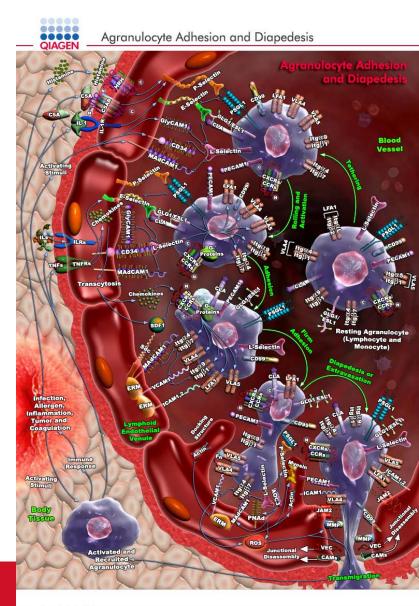
IOWA STATE UNIVERSITY

Cell enrichment analyses results


Cten was used to predict enriched cell types from DEG between Vac and nonVac pigs within 4 and 7 dpi.

→The observed differences in gene expression may result from differences in immune cell composition in blood.




WGCNA results at 7 dpi (35 dpv)

- Module 1 (cor.=-0.52, p value=0.01, #genes=105)
- In total, nine genes are involved in "cytokine-cytokine receptor interaction", "chemokine signaling pathway" "NFkB signaling pathway" and "influenza A" and less expressed in Vac, especially DDX58 and MX1 as DEG.

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Sample to Insight

×